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Abstract. Companies in today’s automotive industry are under immense com-
petitive pressure to reduce the length of their product development cycle from 
initial concept to begin of high-volume manufacturing. A very costly and im-
mensely knowledge-intensive step in this process is the creation of tools and 
dies required to manufacture a car body of a specified design. This paper pre-
sents a novel architecture for a decision support system that streamlines the de-
velopment process through the integration of a virtual assembly simulation, 
problem identification, and solution generation and evaluation. Following the 
virtual functional build process, our architecture deploys a number of multi-
agent systems to provide system functionality, such as problem knowledge re-
trieval or solution generation and evaluation. 

1. Introduction 

Today’s fierce competition in the automotive industry pressures companies to find 
ways to drastically reduce time-to-market while increasing the quality of new vehi-
cles. A key element in the launch process is the body development and manufacturing 
validation. This step is often a bottleneck and the most costly and thus limiting aspect 
of the vehicle launch preparation. The high cost in terms of duration and money is due 
to the intense human involvement in the process as current practice relies heavily on 
human knowledge and experience with very limited means of evaluating proposed so-
lutions other than actual physical implementation. 

Two recent technological advances provide essential building blocks that allow us 
to move from experience-based to data-driven body development. First, we now have 
the ability to efficiently create, transfer and store high-resolution digital scans of 3-
dimensional parts; and secondly, the integration of Finite Element Analysis (FEA) 
and dimensional models enables us to predict residual stresses in a functional build 
assembly. Thus, at this point, suppliers can produce parts using prototype tools and 
dies and submit scans of these parts to the OEM. The scans of the parts are then as-
sembled in simulation and the resulting sub-assembly or complete car body may be 
compared with the design intent. 



To close the loop in the virtual functional build process, we develop a decision 
support system (DBDS – Digital Body Development System) that analyzes the virtual 
product, identifies symptoms of underlying problems in the current design, and pro-
poses and evaluates alternative solutions to the human design team based on past ex-
perience and heuristic search. The launch team then has the option of proposing addi-
tional solution alternatives or choosing a solution for implementation. 

DBDS treats the generation of solu-
tions to problems identified in the cur-
rent design as a search problem in the 
high-dimensional space of modifica-
tions to the design guided by a fitness 
function. Any point in this abstract 
search space is a set of parameterized 
changes to the current design. Comput-
ing the fitness of such a set of changes 
requires the application of these 
changes to the design, and the simula-
tion and analysis of the resulting new 
design comparing it with the current 
design. 

In [3] we present an experimental 
application of our agent-based Adaptive Parameter Search Environment (APSE), 
which performs a heuristic parallel search across an abstract space of input parameters 
to an arbitrary simulation model guided by a fitness function defined over metrics re-
ported during the execution of the model. DBDS is an application and extension of 
APSE in which sets of design changes are treated as input parameters to the virtual 
assembly of a car body and in which the search is guided by the design intent of the 
functional build process. 

Given the complexity and massiveness of the search space that DBDS must ex-
plore in a given optimization run, we enhance the heuristic of the APSE Search agents 
to include prior experience and domain knowledge accessible in a problem-solution 
case base and we enable the human design team to suggest alternative solutions to the 
search process (Figure 1). We implement a Solver, a multi-agent system that interacts 
indirectly with the APSE Search agents and that seeks to retrieve solution points (sets 
of design changes) from a case base. The retrieval is guided by the problem symptoms 
observed in the execution of the current design and by the fitness of solutions that 
have been evaluated already by the Search agents. 

The remainder of this paper is structured as follows. Section 2 discusses the current 
practice of auto body development in more detail. In Section 3 we present the DBDS 
component architecture, which closes the loop in the virtual functional build. Section 
4 discusses the adaptation of the APSE Search agents to the decision support problem 
and Section 5 outlines our swarming approach to solution retrieval. We conclude in 
Section 6. 
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Fig. 1. DBDS performs a parallel heuristic search 
with human and case-based guidance 



2. Current Practice in Body Development 

Detailed engineering design of individual parts and components begins after “design 
freeze”. This typically includes a finite element analysis (FEA) of the nominal design 
to examine stresses, vibration, crash testing, etc., as well as a tolerance analysis to de-
termine how the components will fit. This latter analysis often involves identifying 
designs that are sensitive to variation and making the design more robust by changing 
and redesigning parts to reduce geometric effects. Once the individual part design is 
set, it is released for “tooling” (tool release – i.e. the process of constructing the 
stamping dies), and the functional build process begins. 

Functional build is a criti-
cal process in launching a ve-
hicle (see Figure 2), whereby 
individual prototype parts are 
stamped and then sent to a 
central location to be assem-
bled into a prototype vehicle 
body [1]. Since production 
tooling is often not yet avail-
able, the body is fastened with screws and rivets, hence it is called a “screwbody.” 
The screwbody is examined by experienced experts who must decide whether gaps 
and interference conditions between individual parts are sufficient to warrant chang-
ing the dies, the welding tooling, clamp locations, etc. If it is decided that a change is 
warranted, then the dies may have to be returned to the supplier to be changed. If a 
change is not warranted, then the specifications may be changed to match the part 
shape. This usually involves a uni- or bi-directional opening of the part tolerances. 
The process is then repeated after the changes have been implemented. It is not un-
common to have three or more functional build evaluation bodies during a vehicle 
launch, which is costly and time consuming. However, each evaluation is based on a 
different generation of tooling, so very little information is gleaned on the effects of 
process variation to the integrity of the entire body. 

Two technological trends aimed at improving the dimensional integrity and per-
formance (NVH – or noise, vibration and harshness) of the body are 1) the integration 
of Finite Element Analysis (FEA) and dimensional models and 2) the scanning of fab-
ricated parts and assemblies for comparison of actual builds with the design intent. 

The integration of FEA and dimensional models is significant in that it allows the 
prediction of residual stress in a functional build assembly. Conceptually, the parts are 
assembled in the software. Any interference or gap conditions will be accommodated 
by the assumption that sheet metal is a compliant part. Weld points are identified and 
the parts are forced into full contact at those points. These points are held as boundary 
conditions. Then the FEA program minimizes the stress in the assembly by changing 
the shape of the part according to the boundary conditions.  

The recent progress of combining FEA and dimensional models significantly ad-
vances the science for understanding the complex interactions between sheet metal 
parts and the joining processes (usually spot welding). The effects of interference and 
gap conditions between two mating parts are evaluated based on the amount of part 
“compliance” that can be expected. Compliance (the bending of parts as they are 
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joined together) can be predicted using FEA, which is also used to predict residual 
stress in the assembly. The dimensional model can expand that understanding over the 
expected variation of the fabricating and assembly processes. Together, these two 
tools can quantify manufacturing capability (fabrication and assembly) and produce a 
distribution of residual stress as well as dimensional measures in the body. 

3. Simulation-Based Decision Support 

The Digital Body Development System (DBDS) provides continuous support for the 
vehicle launch team along the entire iterative functional build process. A single itera-
tion starts at a base design, which comprises scans for all parts that have been pro-
duced at this point and CAD-nominals for the remaining parts. The base design also 
specifies the assembly process as it is currently planned. 

In a first step, the base design is “executed” by simulating the virtual assembly of 
the parts and pre-defined measurements are taken on the resulting product. The design 
process is completed, if the results meet the design intent. Otherwise, DBDS inter-
prets the output of the measurements as symptoms of underlying problems and gener-
ates and evaluates solution alternatives (changes to the base design). It may also invite 
human engineers to suggest additional solutions. Eventually, the launch team will set-
tle on a solution and implement the corresponding design changes (i.e., change tools 
and dies, make and scan new parts) to arrive at a new base design. 

In today’s practice of body development, a large team of experts with diverse 
background and experience analyze the current design as it manifests itself in the 
screwbody. Based on their domain knowledge and past experience, individual experts 
suggest solution alternatives and then discuss their potential merit until the team 
agrees on a solution. The whole solution generation and selection process is domi-
nated by human knowledge and experience and solutions are chosen or discarded 
mainly based on hypotheses rather than evidence. Alternatively, DBDS explores the 
space of possible solutions to the currently observed problems and evaluates each so-
lution alternative by simulating the design that results as the changes proposed by the 
solution are applied to the current base design. Thus, solutions that DBDS suggests to 
the launch team are based on evidence provided by the simulation rather than hy-
potheses. 

The simulation-based improvement of a given base design using a heuristic search 
and evaluation process may be applied to domains other than car body development. 
To facilitate such a transfer later on, we specify a generic module architecture that 
makes the specifics of the domain transparent to the optimization process. 



The DBDS decision sup-
port system has seven mod-
ules (Figure 3). The User In-
terface (UI) module manages 
the interaction of the system 
with the human design team. 
The Solution Generation and 
Evaluation (SGE) module 
proposes alternative solutions 
to solve problems with the 
base design and evaluates 
them for their quality and 
cost. The Change Cost Estimation (CCE) module estimates the cost of actually im-
plementing a particular solution as a change to the base design. The Solution Imple-
mentation (SI) module translates a proposed set of changes to the base design into a 
valid modified design that can be simulated by the VASE. The Virtual Assembly and 
Simulation Engine (VASE) simulates the “execution” of a given design by virtually 
assembling parts according to a process description. The Data Preparation and Re-
pository Module (DPRM) manages the large amounts of data generated and used by 
the DBDS. The Process Controller (PC) module integrates the other modules and 
manages the data and process flow among them. 

Figure 4 illustrates the high-level 
(black) and low-level (white) process 
loops facilitated by the PC. At the high 
level, the user triggers the improve-
ment of a base design, which requires 
its execution (VASE) and analysis and 
optimization (SGE). The optimization 
process generates alternative solutions, 
which are evaluated (lower-level 
loops) for their performance (SI, 
VASE) and cost (CCE). 

4. Heuristic Search for Design Changes 

In [3] we present APSE – a multi-agent system that performs a distributed heuristic 
search through the space of input parameters of a black-box simulation model to find 
a configuration that maximizes a fitness function defined over observed metrics on 
the simulation. The APSE Search agents collaboratively explore the space of potential 
solutions (model parameters) and evaluate them through successive simulation runs. 
Using a Particle Swarm Optimization (PSO) algorithm [6] combined with probabilis-
tic local hill climbing, the agents coordinate their activity so that computing resources 
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Fig. 3. The Generic DBDS Module Architecture. 
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(simulation runs) are focused on exploring the most promising regions of the search 
space. 

The Solution Generation and Evaluation (SGE) module of the DBDS hosts an 
APSE Search agent population, whose task it is to explore the space of possible 
changes to the base design for improvements that reduce or remove the problems ob-
served in its execution. Thus, we treat changes to the base design as input parameters 
to a black-box simulation and define a fitness function for the search process that 
measures the degree to which the now modified design meets the design intent. 

DBDS is an enhancement of the APSE architecture. While Search agents in APSE 
are guided only by the fitness of the currently known solution candidates (points in 
the abstract search space), DBDS provides two additional sources of guidance for the 
distributed search (see Figure 1). The first source of solution candidates is the human 
design team. At any point during the search process, human experts may look at the 
problem symptoms and the solutions DBDS has explored so far and suggest another 
solution to the system. Solutions may also be suggested by the Solver, a multi-agent 
system that seeks to match the problem symptoms to the descriptor of solution cases 
recorded in a case base (see Section 5). 

We integrate these two additional 
sources of creativity into the search 
process by enhancing the APSE Search 
agents’ behavior. In APSE, an agent 
explores the search space through a se-
ries of short-range moves that are 
guided by hill-climbing and PSO heu-
ristics. In DBDS, a Search agent moni-
tors the performance of its short-range 
movement heuristic (rate of improve-
ment over time) and may decide to 
abandon its current region in search 
space through a long-range jump be-
yond the local correlation distance of 
the fitness function. The destination of 
the jump is a solution candidate pro-
vided by the human design team or the 
case-based Solver. Figure 5 illustrates 
the emerging agent trajectory in an ab-
stract search space. 

The generic distinction between a local improvement heuristic and global jumps to 
externally suggested solution candidates is open to other solution approaches. Just as 
DBDS currently implements a case-based approach to the solution of problems with 
the base design, other (e.g., rule-based, model-based, etc.) approaches could be im-
plemented independently and feed into the decision process of the Search agents. 
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5. Swarming Case Retrieval 

Today’s car body development process heavily depends on human expert knowledge 
and experience. With DBDS we create a decision support system that has the ability 
to discover new solutions on its own through a heuristic search and evaluation in 
simulation, while at the same time utilizing and capturing human creativity and exper-
tise to move from experience-based to data-driven design. 

The SGE module of DBDS includes 
a dynamic Solver that analyzes prob-
lems with the base design as they 
manifest themselves in observable 
symptoms during the virtual assembly 
and that suggests solutions to these 
problems drawn from a set of problem-
solution cases. We integrate the Solver 
with the heuristic search process by 
suggesting solution candidates to the 
APSE Search agents for their next 
long-range jumps and by modifying 
the case retrieval process based on the 
fitness of the solutions that have al-
ready been explored (Figure 6). 

The ongoing asynchronous interac-
tion with the Search agents and the 
continuous addition of fitness evaluations of new solution candidates requires a dy-
namic update of the case retrieval. Thus, we chose an agent-based any-time approach 
that continuously integrates changes in the external circumstances without having to 
restart its reasoning process from scratch. 

In the following we discuss details of the operation of the Solver top down. First, 
we present the adaptive any-time process that manipulates the description of the cur-
rent problem symptoms to provide a high-quality retrieval of high-performance solu-
tions. Then, we specify the internal mechanics of the fine-grained agent system that 
drives the adaptive modification of the current problem description. 

5.1 Linking Emergent Clustering and Spreading Activation Case Retrieval 

The virtual assembly of the base design by the VASE module results in a large set of 
uniquely identified measurement points on the assembled car body that are either 
within or outside specified tolerances. Just as a fever, a cough and a runny nose are 
possible symptoms of an underlying viral infection, so are patterns of deviations at 
pre-defined measurement points on a (virtually) assembled car body symptoms of 
specific underlying problems (root causes) with the design. 

Our dynamic Solver seeks to match the currently observed symptomatic patterns to 
those of problems encountered in the past, whose solution is recorded in the case 
base. We organize our case base into a simplified Case Retrieval Network (CRN) [7], 
which represents basic components of the problem description and the associated so-
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lution as individual nodes in a spreading activation network. The nodes representing 
problem components are called Information Entity (IE) nodes and a solution is stored 
in a so-called Case node. All IE nodes that describe the problem solved in a specific 
solution case are linked to the respective Case node through weighted relevance 
edges. The retrieval process first places an activation onto individual IE nodes de-
pending on their match to the current problem symptoms and then propagates the ac-
tivation through the relevance edges to the Case nodes. The relative activation of the 
individual Case nodes provides an ordering of the recorded solutions with respect to 
their relevance to the current problem. 

Our goal is to abstract away from the spe-
cific locations and count of measurement points 
provided by the simulation by identifying 
symptomatic regions on the virtual car body 
that may be expressions of the same underlying 
problem. For instance, if a door is set slightly 
off-center into its frame, we may find several 
disconnected regions along the frame in which 
our pre-defined measurements are out of toler-
ance (e.g., gaps, interferences). To that end, the 
Solver executes a fine-grained multi-agent sys-
tem that continuously rearranges measurement 
points into clusters that form components of the 
problem signature (Figure 7). The currently 
emerging problem signature is matched against 
past problems’ signatures in the case base to provide a relevance measure of the 
available solutions. This relevance measure guides the selection of the next solution 
candidate upon request of an APSE Search agent. We select a case probabilistically, 
based on its current normalized relevance. 

The quality of the case retrieval process is high, if there are only one or very few 
cases with a significant probability to be selected. Otherwise, we may as well select a 
case randomly from the entire case base. We measure the current retrieval quality 
with the Case Selection Entropy (CSE) metric, which is the Shannon (Information) 
Entropy [11] of the case selection probabilities. The current CSE, resulting from the 
interaction of the current arrangement of measurement points with the Case Retrieval 
Network, may modify the behavior of the agents in the next clustering cycle. We have 
used similar entropy measures defined over the current preferences of an autonomous 
decision maker (here case selection) in previous projects [4, 9] to estimate the current 
information these preferences actually convey and to subsequently adapt the decision 
process if necessary. 

Figure 8 illustrates the tight feedback loop (black) between the ongoing clustering 
of measurement points and the current case relevance ordering provided by the CRN. 
Through this feedback, the identified problem regions are modified to match past ex-
perience recorded in the case base more closely while maintaining a close tie with the 
actual problems observed in the simulation. 
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The clustering process is 
also influenced on a larger 
time scale by the observed 
performance of solutions that 
have been explored by the 
APSE Search agents (white 
loop in Figure 8). If a solu-
tion case is adopted by a 
Search agent in a long-range 
jump, DBDS evaluates the 
fitness of the changed car 
body design in terms of the 
reduction in problems com-
pared to the base design and 
the estimated cost in imple-
menting these changes. The 
fitness of all solution candi-
dates proposed by the Solver 
is fed back through the Case Retrieval Network (activating case nodes and spreading 
to IE nodes) to attract the clustering mechanism away from or towards to specific ar-
rangements. 

5.2 Emergent Clustering 

The output of the simulation is a cloud of values for predefined measurement points. 
Each point is associated with geometric coordinates on the car body, but it also carries 
additional context values, such as part features with which it is associated, assembly 
process steps that came in contact with the part, or the supplier providing the part. 
Thus, a measurement point is located in a high-dimensional space that combines the 
geometric and context dimensions. Through the additional context, we may associate 
points that are related in the process but not necessarily in geometry to the same sig-
nature component. 
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Starting from the original locations 
of the measurement points, we seek to 
rearrange the points into arbitrary clus-
ters while trying to keep each point 
close to its original location. As Figure 
9 illustrates, there are a number of pos-
sible arrangements that meet these 
qualitative objectives, because we do 
not assume a particular number or size 
of clusters. We design our emergent 
clustering algorithm to potentially visit 
all these arrangements (with varying 
probability) and we use the feedback of 
the Case Selection Entropy metric and 
the currently known solution fitness to 
push the clustering system out of unfa-
vorable configurations. 

Emergent any-time clustering is one 
of the prime examples of emerging 
functionality through stigmergic coor-
dination in large-scale fine-grained multi-agent systems. Nest sorting [2], is an in-
stance of emergent clustering observed in social insect systems. In this case, inde-
pendent agents (ants) pick up or drop off passive objects with a dynamically com-
puted probability. This behavior has been replicated in collective robotics (see for 
instance [5]). An alternative approach to clustering is to give the initiative to the ob-
jects themselves, which then reason about their current local arrangement and move 
about in space. We successfully applied this approach to create large-scale, self-
organizing document bases [10] and we follow the approach in this application too. 

In the emergent adap-
tive clustering algorithm, 
we assign each point an 
agent, which moves 
through the space of 
geometric locations and 
additional context. The 
sum of two dynamic 
force vectors, represent-
ing the two objectives in the rearrangement, determines the trajectory of an agent. The 
first force vector (“Home Force” in Figure 10) attracts the agent back to the original 
location of the measurement point. This force increases with distance. The second 
force vector is the sum of individual component vectors (“Cluster Force” in Figure 
10), which each attract the agent to the location of another nearby agent. The strength 
of this force decreases with distance. The rates in which the forces change for chang-
ing distances are dynamic parameters of the system. 

 
Fig. 9. Possible Cluster Arrangements (black) 
for the same Original Measurement Points 
(white). 
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Fig. 10. Forces represent agent objectives in clustering. 



In each cycle, each agent calculates 
the home force and the cluster force 
vector from the position of the agents 
in the previous cycle. The vector sum 
of these two forces determines the di-
rection into which the agent relocates 
in this step. The length of the step is 
the length of the combined vector, but 
limited to a relatively small step-length 
value (Figure 11). 

If the force calculation algorithm in 
the agent were deterministic and used 
only constant scaling parameters, then 
the system would quickly stabilize on 
one arrangement that minimizes the 
“tension” among the objectives. To 
avoid unstable minima and to explore a 
variety of nearby cluster configura-
tions, we add a small random component to the individual relocation calculation. 

We achieve qualitatively different cluster configurations through the feedback of 
the current retrieval quality and the solution performance, encoded in the Case Selec-
tion Entropy (CSE) and the fitness of solution cases (see Section 5.1). 

The CSE metric offers a global evaluation of the value of the current point ar-
rangement for the high-quality (non-random) retrieval of a solution from the case 
base, but it does not provide any guidance on how the arrangement should be changed 
to achieve a higher retrieval quality. Since higher CSE values correspond to low re-
trieval quality, we need to encourage exploration of new configurations over the ex-
ploitation of current clusters by increasing the impact of the random component in the 
agents’ trajectory calculations. 

The fitness of solution cases that have been explored by the APSE Search agents 
can be translated into directional guidance for the clustering agents. Before each cycle 
of the emergent clustering algorithm, we propagate the fitness of all cases (zero if not 
yet explored) backwards through the CRN to the IE nodes that represent regions of 
high point concentration (clusters) recorded with these past cases. Solution cases that 
led to an improvement in the design communicate a positive activation to their IE’s 
while those that actually made the problem worse send a negative activation. 

The positive or negative activation of IE’s in the Case Retrieval Network translates 
to additional attractive or repulsive force components that steer points towards or 
away from regions in measurement space. We have used a similar back-propagation 
approach in CRN’s to guide the interactive diagnosis of failures in computer hardware 
[8]. 
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6. Conclusion 

Car body development is the most costly step in 
the launch of a new vehicle and even small im-
provements of this process may yield high 
gains for the automotive industry. This paper 
presents the Digital Body Development System 
(DBDS) – a decision support system for the car 
body development team – which is an extension 
of the agent-based Adaptive Parameter Search 
Environment (APSE) presented in [3]. DBDS is 
based on a modular architecture, which makes 
the required activities of the evaluation of the 
fitness of solution candidates (simulation, cost 
estimate) transparent for the APSE Search 
agents exploring the space of changes to the 
current design of the car body. 

The primary extension of APSE, besides its application to a highly complex do-
main, is the integration of external guidance into the local search heuristic of the 
agents. DBDS enhances the decision process of the individual agent, who now tracks 
the performance of the local improvement process (moves) and decides, whether to 
abandon its current region (jump) in favor of solution candidates suggested either by 
the human design team or a novel adaptive case-based Solver. 

The case-based Solver is a complex adaptive system that interacts with the APSE 
Search agent population, providing it with solution candidates that may address cur-
rently observed design problems and adjusting its recommendations based on the fit-
ness of the solutions that have been explored already. The Solver links a fine-grained 
agent system that continuously modifies the description of the current problem with a 
Case Retrieval Network that records solutions to past problems. The retrieval of solu-
tions is refined by the agents’ modification of the problem description, driven by the 
currently estimated quality of the case retrieval and the performance of selected cases. 

The DBDS is the focus of an ongoing NIST/ATP-supported Joint Venture of more 
than a dozen automotive, software development and research companies and organi-
zations (see Table 1). The architecture and algorithms reported in this paper are cur-
rently being implemented and tested and quantitative results from our first prototype 
will be forthcoming soon. 
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ComauPICO
UGS
Ford Motor Company
General Motors Corporation
Perceptron, Inc.
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